Dominance Rules for the Choquet Integral in Multiobjective Dynamic Programming

نویسندگان

  • Lucie Galand
  • Julien Lesca
  • Patrice Perny
چکیده

Multiobjective Dynamic Programming (MODP) is a general problem solving method used to determine the set of Pareto-optimal solutions in optimization problems involving discrete decision variables and multiple objectives. It applies to combinatorial problems in which Pareto-optimality of a solution extends to all its sub-solutions (Bellman principle). In this paper we focus on the determination of the preferred tradeoffs in the Pareto set where preference is measured by a Choquet integral. This model provides high descriptive possibilities but the associated preferences generally do not meet the Bellman principle, thus preventing any straightforward adaptation of MODP. To overcome this difficulty, we introduce here a general family of dominance rules enabling an early pruning of some Pareto-optimal sub-solutions that cannot lead to a Choquet optimum. Within this family, we identify the most efficient dominance rules and show how they can be incorporated into a MODP algorithm. Then we report numerical tests showing the actual efficiency of this approach to find Choquet-optimal tradeoffs in multiobjective knapsack problems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The 2-additive fuzzy Choquet integral-based TODIM method with improved score function under hesitant fuzzy environment

Recently, the TODIM$^1$(an acronym in Portuguese of interactive and multi-criteria decision making) method has attracted increasing attention and many researchers have extended it to deal with multiple attribute decision making (MADM) problems under different situations. However, none of them can be used to handle MADM problems with positive, independent, and negative interactions among attribu...

متن کامل

Generalized interval-valued intuitionistic fuzzy Hamacher generalized Shapley Choquet integral operators for multicriteria decision making

The interval-valued intuitionistic fuzzy set (IVIFS) which is an extension of the Atanassov’s intuitionistic fuzzy set is a powerful tool for modeling real life decision making problems. In this paper, we propose the emph{generalized interval-valued intuitionistic fuzzy Hamacher generalized Shapley Choquet integral} (GIVIFHGSCI) and the emph{interval-valued intuitionistic fuzzy Hamacher general...

متن کامل

2-additive Choquet Optimal Solutions in Multiobjective Optimization Problems

In this paper, we propose a sufficient condition for a solution to be optimal for a 2-additive Choquet integral in the context of multiobjective combinatorial optimization problems. A 2-additive Choquet optimal solution is a solution that optimizes at least one set of parameters of the 2-additive Choquet integral. We also present a method to generate 2-additive Choquet optimal solutions of mult...

متن کامل

New scheduling rules for a dynamic flexible flow line problem with sequence-dependent setup times

In the literature, the application of multi-objective dynamic scheduling problem and simple priority rules are widely studied. Although these rules are not efficient enough due to simplicity and lack of general insight, composite dispatching rules have a very suitable performance because they result from experiments. In this paper, a dynamic flexible flow line problem with sequence-dependent se...

متن کامل

A General Scalar-Valued Gap Function for Nonsmooth Multiobjective Semi-Infinite Programming

For a nonsmooth multiobjective mathematical programming problem governed by infinitely many constraints‎, ‎we define a new gap function that generalizes the definitions of this concept in other articles‎. ‎Then‎, ‎we characterize the efficient‎, ‎weakly efficient‎, ‎and properly efficient solutions of the problem utilizing this new gap function‎. ‎Our results are based on $(Phi,rho)-$invexity‎,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013